Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
2.
N Engl J Med ; 385(6): 503-515, 2021 08 05.
Article in English | MEDLINE | ID: covidwho-2160403

ABSTRACT

BACKGROUND: Tirzepatide is a dual glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 (GLP-1) receptor agonist that is under development for the treatment of type 2 diabetes. The efficacy and safety of once-weekly tirzepatide as compared with semaglutide, a selective GLP-1 receptor agonist, are unknown. METHODS: In an open-label, 40-week, phase 3 trial, we randomly assigned 1879 patients, in a 1:1:1:1 ratio, to receive tirzepatide at a dose of 5 mg, 10 mg, or 15 mg or semaglutide at a dose of 1 mg. At baseline, the mean glycated hemoglobin level was 8.28%, the mean age 56.6 years, and the mean weight 93.7 kg. The primary end point was the change in the glycated hemoglobin level from baseline to 40 weeks. RESULTS: The estimated mean change from baseline in the glycated hemoglobin level was -2.01 percentage points, -2.24 percentage points, and -2.30 percentage points with 5 mg, 10 mg, and 15 mg of tirzepatide, respectively, and -1.86 percentage points with semaglutide; the estimated differences between the 5-mg, 10-mg, and 15-mg tirzepatide groups and the semaglutide group were -0.15 percentage points (95% confidence interval [CI], -0.28 to -0.03; P = 0.02), -0.39 percentage points (95% CI, -0.51 to -0.26; P<0.001), and -0.45 percentage points (95% CI, -0.57 to -0.32; P<0.001), respectively. Tirzepatide at all doses was noninferior and superior to semaglutide. Reductions in body weight were greater with tirzepatide than with semaglutide (least-squares mean estimated treatment difference, -1.9 kg, -3.6 kg, and -5.5 kg, respectively; P<0.001 for all comparisons). The most common adverse events were gastrointestinal and were primarily mild to moderate in severity in the tirzepatide and semaglutide groups (nausea, 17 to 22% and 18%; diarrhea, 13 to 16% and 12%; and vomiting, 6 to 10% and 8%, respectively). Of the patients who received tirzepatide, hypoglycemia (blood glucose level, <54 mg per deciliter) was reported in 0.6% (5-mg group), 0.2% (10-mg group), and 1.7% (15-mg group); hypoglycemia was reported in 0.4% of those who received semaglutide. Serious adverse events were reported in 5 to 7% of the patients who received tirzepatide and in 3% of those who received semaglutide. CONCLUSIONS: In patients with type 2 diabetes, tirzepatide was noninferior and superior to semaglutide with respect to the mean change in the glycated hemoglobin level from baseline to 40 weeks. (Funded by Eli Lilly; SURPASS-2 ClinicalTrials.gov number, NCT03987919.).


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Gastric Inhibitory Polypeptide/administration & dosage , Glucagon-Like Peptides/administration & dosage , Hypoglycemic Agents/administration & dosage , Blood Glucose/analysis , Diabetes Mellitus, Type 2/blood , Dose-Response Relationship, Drug , Drug Administration Schedule , Drug Therapy, Combination , Female , Gastric Inhibitory Polypeptide/adverse effects , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptides/adverse effects , Glycated Hemoglobin/analysis , Humans , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/therapeutic use , Incretins/therapeutic use , Injections, Subcutaneous , Male , Metformin/therapeutic use , Middle Aged , Nausea/chemically induced , Weight Loss/drug effects
3.
JAMA ; 328(9): 861-871, 2022 09 06.
Article in English | MEDLINE | ID: covidwho-2058978

ABSTRACT

Importance: Novel therapies for type 2 diabetes can reduce the risk of cardiovascular disease and chronic kidney disease progression. The equitability of these agents' prescription across racial and ethnic groups has not been well-evaluated. Objective: To investigate differences in the prescription of sodium-glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1 RA) among adult patients with type 2 diabetes by racial and ethnic groups. Design, Setting, and Participants: Cross-sectional analysis of data from the US Veterans Health Administration's Corporate Data Warehouse. The sample included adult patients with type 2 diabetes and at least 2 primary care clinic visits from January 1, 2019, to December 31, 2020. Exposures: Self-identified race and self-identified ethnicity. Main Outcomes and Measures: The primary outcomes were prevalent SGLT2i or GLP-1 RA prescription, defined as any active prescription during the study period. Results: Among 1 197 914 patients (mean age, 68 years; 96% men; 1% American Indian or Alaska Native, 2% Asian, Native Hawaiian, or Other Pacific Islander, 20% Black or African American, 71% White, and 7% of Hispanic or Latino ethnicity), 10.7% and 7.7% were prescribed an SGLT2i or a GLP-1 RA, respectively. Prescription rates for SGLT2i and GLP-1 RA, respectively, were 11% and 8.4% among American Indian or Alaska Native patients; 11.8% and 8% among Asian, Native Hawaiian, or Other Pacific Islander patients; 8.8% and 6.1% among Black or African American patients; and 11.3% and 8.2% among White patients, respectively. Prescription rates for SGLT2i and GLP-1 RA, respectively, were 11% and 7.1% among Hispanic or Latino patients and 10.7% and 7.8% among non-Hispanic or Latino patients. After accounting for patient- and system-level factors, all racial groups had significantly lower odds of SGLT2i and GLP-1 RA prescription compared with White patients. Black patients had the lowest odds of prescription compared with White patients (adjusted odds ratio, 0.72 [95% CI, 0.71-0.74] for SGLT2i and 0.64 [95% CI, 0.63-0.66] for GLP-1 RA). Patients of Hispanic or Latino ethnicity had significantly lower odds of prescription (0.90 [95% CI, 0.88-0.93] for SGLT2i and 0.88 [95% CI, 0.85-0.91] for GLP-1 RA) compared with non-Hispanic or Latino patients. Conclusions and Relevance: Among patients with type 2 diabetes in the Veterans Health Administration system during 2019 and 2020, prescription rates of SGLT2i and GLP-1 RA medications were low, and individuals of several different racial groups and those of Hispanic ethnicity had statistically significantly lower odds of receiving prescriptions for these medications compared with individuals of White race and non-Hispanic ethnicity. Further research is needed to understand the mechanisms underlying these differences in rates of prescribing and the potential relationship with differences in clinical outcomes.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Like Peptide-1 Receptor , Healthcare Disparities , Prescriptions , Sodium-Glucose Transporter 2 Inhibitors , Veterans Health , Adult , Aged , Cross-Sectional Studies , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/ethnology , Ethnicity/statistics & numerical data , Female , Glucagon-Like Peptide-1 Receptor/agonists , Health Equity/statistics & numerical data , Healthcare Disparities/ethnology , Healthcare Disparities/statistics & numerical data , Humans , Hypoglycemic Agents/therapeutic use , Male , Practice Patterns, Physicians'/statistics & numerical data , Prescriptions/statistics & numerical data , Professional Practice/statistics & numerical data , Racial Groups/statistics & numerical data , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , United States/epidemiology , Veterans Health/ethnology , Veterans Health/statistics & numerical data
5.
Metabolism ; 131: 155196, 2022 06.
Article in English | MEDLINE | ID: covidwho-1768409

ABSTRACT

BACKGROUND: Diabetes is an independent predictor of poor outcomes in patients with COVID-19. We compared the effects of the preadmission use of antidiabetic medications on the in-hospital mortality of patients with COVID-19 having type 2 diabetes. METHODS: A systematic search of PubMed, EMBASE, Scopus and Web of Science databases was performed to include studies (except case reports and review articles) published until November 30, 2021. We excluded papers regarding in-hospital use of antidiabetic medications. We used a random-effects meta-analysis to calculate the pooled OR (95% CI) and performed a sensitivity analysis to confirm the robustness of the meta-analyses. MAIN FINDINGS: We included 61 studies (3,061,584 individuals), which were rated as having low risk of bias. The OR (95% CI) indicated some medications protective against COVID-related death, including metformin [0.54 (0.47-0.62), I2 86%], glucagon-like peptide-1 receptor agonist (GLP-1RA) [0.51 (0.37-0.69), I2 85%], and sodium-glucose transporter-2 inhibitor (SGLT-2i) [0.60 (0.40-0.88), I2 91%]. Dipeptidyl peptidase-4 inhibitor (DPP-4i) [1.23 (1.07-1.42), I2 82%] and insulin [1.70 (1.33-2.19), I2 97%] users were more likely to die during hospitalization. Sulfonylurea, thiazolidinedione, and alpha-glucosidase inhibitor were mortality neutral [0.92 (95% CI 0.83-1.01, I2 44%), 0.90 (95% CI 0.71-1.14, I2 46%), and 0.61 (95% CI 0.26-1.45, I2 77%), respectively]. The sensitivity analysis indicated that our findings were robust. CONCLUSIONS: Metformin, GLP-1RA, and SGLT-2i were associated with lower mortality rate in patients with COVID-19 having type 2 diabetes. DPP-4i and insulin were linked to increased mortality. Sulfonylurea, thiazolidinedione, and alpha-glucosidase inhibitors were mortality neutral. These findings can have a large impact on the clinicians' decisions amid the COVID-19 pandemic.


Subject(s)
COVID-19 Drug Treatment , Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Insulins , Metformin , Sodium-Glucose Transporter 2 Inhibitors , Thiazolidinediones , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Glucagon-Like Peptide-1 Receptor/agonists , Humans , Hypoglycemic Agents/pharmacology , Insulins/therapeutic use , Metformin/therapeutic use , Pandemics , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sulfonylurea Compounds/therapeutic use , Thiazolidinediones/therapeutic use
6.
Rev Endocr Metab Disord ; 23(3): 521-539, 2022 06.
Article in English | MEDLINE | ID: covidwho-1611457

ABSTRACT

Semaglutide, a glucagon like peptide-1 (GLP-1) receptor agonist, is available as monotherapy in both subcutaneous as well as oral dosage form (first approved oral GLP-1 receptor agonist). It has been approved as a second line treatment option for better glycaemic control in type 2 diabetes and currently under scrutiny for anti-obesity purpose. Semaglutide has been proved to be safe in adults and elderly patients with renal or hepatic disorders demanding no dose modification. Cardiovascular (CV) outcome trials established that it can reduce various CV risk factors in patients with established CV disorders. Semaglutide is well tolerated with no risk of hypoglycaemia in monotherapy but suffers from gastrointestinal adverse effects. A large population affected with COVID-19 infection were diabetic; therefore use of semaglutide in diabetes as well as CV patients would be very much supportive in maintaining health care system during this pandemic situation. Hence, this peptidic drug can be truly considered as a quintessential of GLP-1 agonists for management of type 2 diabetes.


Subject(s)
COVID-19 Drug Treatment , Diabetes Mellitus, Type 2 , Aged , Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/therapeutic use , Glucagon-Like Peptides , Humans , Hypoglycemic Agents/therapeutic use
7.
Med Hypotheses ; 158: 110739, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1560835

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an infectious diseases caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Now, it is pandemic over the world. SARS-CoV-2 often causes a "cytokine storm" in people with COVID-19, causing inflammatory lung damage and pneumonia, which eventually leads to death. Glucagon like peptide-1 (GLP-1) is well known as an incretin hormone responsible for regulation of blood glucose through its receptor. Beyond glycemic control, GLP-1 receptor agonists (GLP-1RAs) have promising anti-inflammatory actions in human and rodent pathological models. Recent studies proved that GLP-1RAs attenuate pulmonary inflammation, reduce cytokine production, and preserve lung function in mice and rats with experimental lung injury. Moreover, a thickened pulmonary vascular wall, an important characteristic of pulmonary arterial hypertension (PAH) was observed in the autopsy lung tissue of a COVID-19 patient. Thus GLP-1RAs may be a novel therapeutic strategy for combating this pandemic specifically for patient characteristics of PHA after COVID-19 infection.


Subject(s)
COVID-19 , Glucagon-Like Peptide-1 Receptor/agonists , Pulmonary Arterial Hypertension , Animals , COVID-19/complications , Humans , Lung , Mice , Pulmonary Arterial Hypertension/drug therapy , Pulmonary Arterial Hypertension/virology , Rats
9.
Diabetes Care ; 44(7): 1564-1572, 2021 07.
Article in English | MEDLINE | ID: covidwho-1405389

ABSTRACT

OBJECTIVE: To determine the respective associations of premorbid glucagon-like peptide-1 receptor agonist (GLP1-RA) and sodium-glucose cotransporter 2 inhibitor (SGLT2i) use, compared with premorbid dipeptidyl peptidase 4 inhibitor (DPP4i) use, with severity of outcomes in the setting of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. RESEARCH DESIGN AND METHODS: We analyzed observational data from SARS-CoV-2-positive adults in the National COVID Cohort Collaborative (N3C), a multicenter, longitudinal U.S. cohort (January 2018-February 2021), with a prescription for GLP1-RA, SGLT2i, or DPP4i within 24 months of positive SARS-CoV-2 PCR test. The primary outcome was 60-day mortality, measured from positive SARS-CoV-2 test date. Secondary outcomes were total mortality during the observation period and emergency room visits, hospitalization, and mechanical ventilation within 14 days. Associations were quantified with odds ratios (ORs) estimated with targeted maximum likelihood estimation using a super learner approach, accounting for baseline characteristics. RESULTS: The study included 12,446 individuals (53.4% female, 62.5% White, mean ± SD age 58.6 ± 13.1 years). The 60-day mortality was 3.11% (387 of 12,446), with 2.06% (138 of 6,692) for GLP1-RA use, 2.32% (85 of 3,665) for SGLT2i use, and 5.67% (199 of 3,511) for DPP4i use. Both GLP1-RA and SGLT2i use were associated with lower 60-day mortality compared with DPP4i use (OR 0.54 [95% CI 0.37-0.80] and 0.66 [0.50-0.86], respectively). Use of both medications was also associated with decreased total mortality, emergency room visits, and hospitalizations. CONCLUSIONS: Among SARS-CoV-2-positive adults, premorbid GLP1-RA and SGLT2i use, compared with DPP4i use, was associated with lower odds of mortality and other adverse outcomes, although DPP4i users were older and generally sicker.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Glucagon-Like Peptide-1 Receptor/agonists , Sodium-Glucose Transporter 2 Inhibitors , Adult , Aged , COVID-19/diagnosis , Diabetes Mellitus, Type 2/drug therapy , Female , Humans , Longitudinal Studies , Male , Middle Aged , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , United States
10.
Expert Opin Drug Saf ; 20(11): 1309-1315, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1366929

ABSTRACT

INTRODUCTION: A number of anti-diabetic treatments have been favored during the continuing spread of the current SARS-CoV-2 pandemic. Glucagon like peptide-1 receptor agonists (GLP1-RAs) are a group of antidiabetic drugs, the glucose reducing effect of which is founded on augmenting glucose-dependent insulin secretion with concomitant reduction of glucagon secretion and delayed gastric emptying. Apart from their glucose lowering effects, GLP1-RAs also exert a plethora of pleiotropic activities in the form of anti-inflammatory, anti-thrombotic and anti-obesogenic properties, with beneficial cardiovascular and renal impact. All these make this class of drugs a preferred option for managing patients with type 2 diabetes (T2D), and potentially helpful in those with SARS-CoV2 infection. AREAS COVERED: In the present article we propose a hypothetical molecular mechanism by which GLP1-RAs may interact with SARS-CoV-2 activity. EXPERT OPINION: The beneficial properties of GLP1-RAs may be of specific importance during COVID-19 infection for the most fragile patients with chronic comorbid conditions such as T2D, and those at higher cardiovascular and renal disease risk. Yet, further studies are needed to confirm our hypothesis and preliminary findings available in the literature.


Subject(s)
COVID-19 Drug Treatment , Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide-1 Receptor/agonists , Hypoglycemic Agents/therapeutic use , Incretins/therapeutic use , Animals , COVID-19/epidemiology , COVID-19/metabolism , COVID-19/virology , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Humans , Hypoglycemic Agents/adverse effects , Incretins/adverse effects , Signal Transduction , Treatment Outcome
11.
Expert Rev Anti Infect Ther ; 20(3): 373-381, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1341075

ABSTRACT

INTRODUCTION: Understanding the pathogenesis and risk factors to control the coronavirus disease 2019 (COVID-19) is necessary. Due to the importance of the inflammatory pathways in the pathogenesis of COVID-19 patients, evaluating the effects of anti-inflammatory medications is important. Glucagon-like peptide 1 receptor agonist (GLP-1 RA) is awell-known glucose-lowering agent with anti-inflammatory effects. AREAS COVERED: Resources were extracted from the PubMed database, using keywords such as glucagon-like peptide-1, GLP-1 RA, SARS-CoV-2, COVID-19, inflammation, in April2021. In this review, the effects of GLP-1RA in reducing inflammation and modifying risk factors of COVID-19 severe complications are discussed. However, GLP-1 is degraded by DPP-4 with aplasma half-life of about 2-5 minutes, which makes it difficult to measure GLP-1 plasma level in clinical settings. EXPERT OPINION: Since no definitive treatment is available for COVID-19 so far, determining promising targets to design and/or repurpose effective medications is necessary.


Subject(s)
COVID-19 Drug Treatment , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor/agonists , Anti-Inflammatory Agents/therapeutic use , Glucagon-Like Peptide 1/blood , Humans , SARS-CoV-2
13.
Int J Mol Sci ; 22(14)2021 Jul 16.
Article in English | MEDLINE | ID: covidwho-1314668

ABSTRACT

COVID-19 infection poses an important clinical therapeutic problem, especially in patients with coexistent diseases such as type 2 diabetes. Potential pathogenetic links between COVID-19 and diabetes include inflammation, effects on glucose homeostasis, haemoglobin deoxygenation, altered immune status and activation of the renin-angiotensin-aldosterone system (RAAS). Moreover, drugs often used in the clinical care of diabetes (dipeptidyl peptidase 4 inhibitors, glucagon-like peptide 1 receptor agonists, sodium-glucose cotransporter 2 inhibitors, metformin and insulin) may influence the course of SARS-CoV-2 infection, so it is very important to verify their effectiveness and safety. This review summarises the new advances in diabetes therapy and COVID-19 and provides clinical recommendations that are essential for medical doctors and for patients suffering from type 2 diabetes.


Subject(s)
COVID-19/therapy , Diabetes Mellitus, Type 2/therapy , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , COVID-19/complications , COVID-19/epidemiology , COVID-19/physiopathology , Diabetes Mellitus, Type 2/physiopathology , Diabetes Mellitus, Type 2/virology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists , Humans , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Metformin/therapeutic use , SARS-CoV-2/isolation & purification , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
14.
Cell Metab ; 33(4): 692-699, 2021 04 06.
Article in English | MEDLINE | ID: covidwho-1298657

ABSTRACT

Marking insulin's centennial, we share stories of researchers and clinicians whose seminal work has advanced our understanding of insulin, islet biology, insulin resistance, and diabetes. The past century of pursuing the "hormone of hormones" and advancing diabetes therapies is replete with stories of collaboration, perseverance, and triumph.


Subject(s)
Diabetes Mellitus/drug therapy , Insulin/therapeutic use , Biomedical Research/history , Cell- and Tissue-Based Therapy , Drug Delivery Systems , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , History, 20th Century , History, 21st Century , Humans , Insulin/chemistry , Insulin/metabolism , Insulin Resistance , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/metabolism
15.
Diabetes Obes Metab ; 23(4): 910-915, 2021 04.
Article in English | MEDLINE | ID: covidwho-1028904

ABSTRACT

AIM: To estimate the proportion of individuals with type 2 diabetes mellitus (T2DM) undergoing changes in glucose-lowering therapy in 2019 and 2020. METHOD: Individuals with T2DM who had at least one consultation in one of 940 general (including diabetologist) practices in Germany between January and July 2019 (N = 79 268) and between January and July 2020 (N = 85 046) were included. Therapy changes were defined as the prescription of new glucose-lowering drugs, with or without the discontinuation of previous treatments (therapy switch and add-on therapy, respectively). The number of T2DM patients with at least one medication regimen change was calculated for the periods 1 January to 14 March in 2019 and 2020, and for the periods 15 March to 31 July in 2019 and 2020. March 2020 corresponded to the beginning of the lockdown in Germany. RESULTS: Overall, there was a decrease in the number of patients with at least one medication regimen change in the period 15 March to 31 July 2019 compared with 15 March to 31 July 2020 (dipeptidyl peptidase-4 inhibitors: -15%; sodium-glucose co-transporter-2 inhibitors: -3%; glucagon-like peptide-1 receptor agonists: 0%; other oral glucose-lowering drugs: -6%; and insulin: -21%). CONCLUSIONS: The coronavirus disease-2019 (COVID-2019) pandemic had a strong impact on glucose-lowering drug use in T2DM patients in Germany. More research is warranted to further investigate the treatment and management of T2DM individuals during the COVID-19 era in Germany and elsewhere.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/therapeutic use , Adolescent , Adult , Aged , Aged, 80 and over , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Drug Substitution/trends , Drug Therapy, Combination/trends , Female , Germany , Glucagon-Like Peptide-1 Receptor/agonists , Humans , Insulin/therapeutic use , Male , Middle Aged , SARS-CoV-2 , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Young Adult
16.
Clin Obes ; 11(2): e12439, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1015529

ABSTRACT

The aim of the present manuscript is to discuss on potential pros and cons of glucagon-like peptide-1 receptor agonists (GLP-1RAs) as glucose-lowering agents during COVID-19 pandemic, and what is more to evaluate them as potential candidates for the treatment of patients, affected by COVID-19 infection, with or even without diabetes mellitus type 2. Besides being important glucose-lowering agents, GLP-1RAs pose promising anti-inflammatory and anti-obesogenic properties, pulmonary protective effects, as well as beneficial impact on gut microbiome composition. Hence, taking everything previously mentioned into consideration, GLP-1RAs seem to be potential candidates for the treatment of patients, affected by COVID-19 infection, with or even without type 2 diabetes mellitus, as well as excellent antidiabetic (glucose-lowering) agents during COVID-19 pandemic times.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Diabetes Mellitus, Type 2 , Glucagon-Like Peptide-1 Receptor/agonists , Hypoglycemic Agents/pharmacology , Obesity , COVID-19/epidemiology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Drug Repositioning/methods , Humans , Obesity/drug therapy , Obesity/metabolism , Protective Agents/pharmacology , SARS-CoV-2
17.
J Diabetes Complications ; 34(12): 107723, 2020 12.
Article in English | MEDLINE | ID: covidwho-731824

ABSTRACT

Inflammation is implicated in the development and severity of the coronavirus disease 2019 (COVID-19), as well as in the pathophysiology of diabetes. Diabetes, especially when uncontrolled, is also recognized as an important risk factor for COVID-19 morbidity and mortality. Furthermore, certain inflammatory markers [i.e. C-reactive protein (CRP), interleukin-6 (IL-6) and ferritin] were reported as strong predictors of worse outcomes in COVID-19 positive patients. The same biomarkers have been associated with poor glycemic control. Therefore, achieving euglycemia in patients with diabetes is even more important in the era of the COVID-19 pandemic. Based on the above, it is clinically interesting to elucidate whether antidiabetic drugs may reduce inflammation, thus possibly minimizing the risk for COVID-19 development and severity. The present narrative review discusses the potential anti-inflammatory properties of certain antidiabetic drugs (i.e. metformin, pioglitazone, sitagliptin, linagliptin, vildagliptin, alogliptin, saxagliptin, liraglutide, dulaglutide, exenatide, lixisenatide, semaglutide, empagliflozin, dapagliflozin, canagliflozin), with a focus on CRP, IL-6 and ferritin.


Subject(s)
COVID-19/epidemiology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Hypoglycemic Agents/therapeutic use , Inflammation/prevention & control , SARS-CoV-2 , Anti-Inflammatory Agents , COVID-19/physiopathology , COVID-19/prevention & control , Comorbidity , Diabetes Mellitus, Type 2/physiopathology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists , Humans , Metformin/therapeutic use , Pioglitazone/therapeutic use , Risk Factors , Sitagliptin Phosphate/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
18.
J Diabetes Investig ; 11(5): 1104-1114, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-724172

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a global pandemic that is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus-2. Data from several countries have shown higher morbidity and mortality among individuals with chronic metabolic diseases, such as diabetes mellitus. In this review, we explore the contributing factors for poorer prognosis in these individuals. As a significant proportion of patients with COVID-19 also have diabetes mellitus, this adds another layer of complexity to their management. We explore potential interactions between antidiabetic medications and renin-angiotensin-aldosterone system inhibitors with COVID-19. Suggested recommendations for the use of antidiabetic medications for COVID-19 patients with diabetes mellitus are provided. We also review pertinent clinical considerations in the management of diabetic ketoacidosis in COVID-19 patients. In addition, we aim to increase clinicians' awareness of the metabolic effects of promising drug therapies for COVID-19. Finally, we highlight the importance of timely vaccinations for patients with diabetes mellitus.


Subject(s)
COVID-19/immunology , Diabetes Complications/immunology , Diabetes Mellitus/immunology , Obesity/immunology , Antibodies, Monoclonal, Humanized/therapeutic use , Antiviral Agents/therapeutic use , Blood Glucose/metabolism , COVID-19/complications , COVID-19/metabolism , COVID-19 Vaccines/therapeutic use , Chloroquine/therapeutic use , Comorbidity , Diabetes Complications/drug therapy , Diabetes Complications/metabolism , Diabetes Complications/physiopathology , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Diabetes Mellitus/physiopathology , Diabetic Ketoacidosis/complications , Diabetic Ketoacidosis/therapy , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Drug Combinations , Glucagon-Like Peptide-1 Receptor/agonists , Glycemic Control , Humans , Hydroxychloroquine/therapeutic use , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Insulin Resistance , Insulin Secretion , Interferon Type I/therapeutic use , Lopinavir/therapeutic use , Lung/physiopathology , Metformin/therapeutic use , Obesity/complications , Obesity/metabolism , Obesity/physiopathology , Pancreas/metabolism , Ritonavir/therapeutic use , Severity of Illness Index , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sulfonylurea Compounds/therapeutic use , Thiazolidinediones/therapeutic use , COVID-19 Drug Treatment
19.
Cardiovasc Diabetol ; 19(1): 115, 2020 07 22.
Article in English | MEDLINE | ID: covidwho-662457

ABSTRACT

The coronavirus disease 2019 (COVID-19) has been declared as pandemic by the World Health Organization and is causing substantial morbidity and mortality all over the world. Type 2 diabetes, hypertension, and cardiovascular disease significantly increase the risk for hospitalization and death in COVID-19 patients. Hypoglycemia and hyperglycemia are both predictors for adverse outcomes in hospitalized patients. An optimized glycemic control should be pursued in patients with diabetes and SARS-CoV-2 infection in order to reduce the risk of severe COVID-19 course. Both insulin and GLP-1RAs have shown optimal glucose-lowering and anti-inflammatory effects in type 2 diabetic patients and may represent a valid therapeutic option to treat asymptomatic and non-critically ill COVID-19 diabetic patients.


Subject(s)
Betacoronavirus/pathogenicity , Blood Glucose/drug effects , Coronavirus Infections/therapy , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/administration & dosage , Incretins/administration & dosage , Insulin/administration & dosage , Pneumonia, Viral/therapy , Biomarkers/blood , Blood Glucose/metabolism , COVID-19 , Clinical Decision-Making , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Glucagon-Like Peptide-1 Receptor/agonists , Host Microbial Interactions , Humans , Hypoglycemic Agents/adverse effects , Incretins/adverse effects , Insulin/adverse effects , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Risk Assessment , Risk Factors , SARS-CoV-2 , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL